Tensorflow
Training
"""
Example taken from https://github.com/mlflow/mlflow/blob/master/examples/tensorflow/tf2/train_predict_2.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tempfile
import mlflow
import argparse
import pandas as pd
import tensorflow as tf
import mlflow.tensorflow
TRAIN_URL = "http://download.tensorflow.org/data/iris_training.csv"
TEST_URL = "http://download.tensorflow.org/data/iris_test.csv"
CSV_COLUMN_NAMES = [
"SepalLength",
"SepalWidth",
"PetalLength",
"PetalWidth",
"Species",
]
SPECIES = ["Setosa", "Versicolor", "Virginica"]
def load_data(y_name="Species"):
"""Returns the iris dataset as (train_x, train_y), (test_x, test_y)."""
train_path = tf.keras.utils.get_file(TRAIN_URL.split("/")[-1], TRAIN_URL)
test_path = tf.keras.utils.get_file(TEST_URL.split("/")[-1], TEST_URL)
train = pd.read_csv(train_path, names=CSV_COLUMN_NAMES, header=0)
train_x, train_y = train, train.pop(y_name)
test = pd.read_csv(test_path, names=CSV_COLUMN_NAMES, header=0)
test_x, test_y = test, test.pop(y_name)
return (train_x, train_y), (test_x, test_y)
def train_input_fn(features, labels, batch_size):
"""An input function for training"""
# Convert the inputs to a Dataset.
dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))
# Shuffle, repeat, and batch the examples.
dataset = dataset.shuffle(1000).repeat().batch(batch_size)
# Return the dataset.
return dataset
def eval_input_fn(features, labels, batch_size):
"""An input function for evaluation or prediction"""
features = dict(features)
if labels is None:
# No labels, use only features.
inputs = features
else:
inputs = (features, labels)
# Convert the inputs to a Dataset.
dataset = tf.data.Dataset.from_tensor_slices(inputs)
# Batch the examples
assert batch_size is not None, "batch_size must not be None"
dataset = dataset.batch(batch_size)
# Return the dataset.
return dataset
mlflow.set_tracking_uri("http://localhost:5000")
# Enable auto-logging to MLflow to capture TensorBoard metrics.
mlflow.tensorflow.autolog()
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", default=100, type=int, help="batch size")
parser.add_argument(
"--train_steps", default=1000, type=int, help="number of training steps"
)
def main(args):
experiment_name = "test_tensorflow"
if mlflow.get_experiment_by_name(experiment_name) is None:
mlflow.create_experiment(experiment_name)
with mlflow.start_run(experiment_id=5):
# Fetch the data
(train_x, train_y), (test_x, test_y) = load_data()
# Feature columns describe how to use the input.
my_feature_columns = []
for key in train_x.keys():
my_feature_columns.append(
tf.feature_column.numeric_column(key=key)
)
# Two hidden layers of 10 nodes each.
hidden_units = [10, 10]
# Build 2 hidden layer DNN with 10, 10 units respectively.
classifier = tf.estimator.DNNClassifier(
feature_columns=my_feature_columns,
hidden_units=hidden_units,
# The model must choose between 3 classes.
n_classes=3,
)
# Train the Model.
classifier.train(
input_fn=lambda: train_input_fn(train_x, train_y, args.batch_size),
steps=args.train_steps,
)
# Evaluate the model.
eval_result = classifier.evaluate(
input_fn=lambda: eval_input_fn(test_x, test_y, args.batch_size)
)
print("\nTest set accuracy: {accuracy:0.3f}\n".format(**eval_result))
# Creating output tf.Variables to specify the output of the saved model.
feat_specifications = {
"SepalLength": tf.Variable(
[], dtype=tf.float64, name="SepalLength"
),
"SepalWidth": tf.Variable([], dtype=tf.float64, name="SepalWidth"),
"PetalLength": tf.Variable(
[], dtype=tf.float64, name="PetalLength"
),
"PetalWidth": tf.Variable([], dtype=tf.float64, name="PetalWidth"),
}
receiver_fn = tf.estimator.export.build_raw_serving_input_receiver_fn(
feat_specifications
)
temp = tempfile.mkdtemp()
classifier.export_saved_model(temp, receiver_fn,).decode("utf-8")
# custom code for registering models
mlflow_client = mlflow.tracking.MlflowClient("http://localhost:5000")
run_id = mlflow_client.list_run_infos(experiment_id=4)[0].run_id
mlflow.register_model(
"runs:/{}/artifacts/model".format(run_id), "tensorflow_model"
)
if __name__ == "__main__":
args = parser.parse_args()
main(args)
To run it :
python3 -m examples.training.tensorflow
Serving
import os
import mlflow
from serveml.api import ApiBuilder
from serveml.inputs import BasicInput
from serveml.loader import load_mlflow_model
from serveml.predictions import GenericPrediction
# getting run_id
mlflow_client = mlflow.tracking.MlflowClient("http://localhost:5000")
run_id = mlflow_client.list_run_infos(experiment_id=5)[0].run_id
current_directory = os.getcwd()
model = load_mlflow_model(
"{}/5/{}/artifacts/model".format(current_directory, run_id)
)
# Implement deserializer for input data
class PetalComposition(BasicInput):
SepalWidth: float
SepalLength: float
PetalLength: float
PetalWidth: float
# implement application
app = ApiBuilder(GenericPrediction(model), PetalComposition).build_api()
To run it :
uvicorn examples.serving.tensorflow:app --host 0.0.0.0